
Shifting one frequency up

Say we want to move a tone that we can hear that has a frequency a to a frequency of
m+a. This frequency might be so high that we can’t hear it; how might we do this?

The schematic below shows one way of doing this.

)
co

s(



m

x
B

)cos(baxA 

X

osc

X

2




2






)2/cos( baxA

 ))()cos(())()cos((
2

bxambxam
AB

 

)2/cos( mxB

 ))()cos(())()cos((
2

  bxambxam
AB

 ))()cos(())()cos((
2

bxambxam
AB

 

))()cos((bxamAB  

Why so complicated? We could have just mixed our frequency of a with

 mxBcos but doing that creates  )()(cos bxam   as a term. In RF literature
this term is in what is called the lower sideband (LSB). We only want

 )()(cos bxam   and this is in the upper sideband (USB). Basically we want to
create a single sideband (ssb) transmitter for just one frequency of a.

Cheating with maple

Using maple you can experiment with mixing things.

While maple can't even calculate the Fourier transform of sine from basic principles it
does have a function that will do it called “fourier”

With maple (13) performing a Fourier transform of  mxB cos from the time
domain to the frequency domain we get the following.

This means  mxB cos has a frequency of m with phase  as well as a frequency

of m with phase  , both with amplitude B. The positive frequency m is probably
no surprise but the negative frequency m might be new to you.

Now we mix two cosines together.

This time we get four nonzero locations at frequencies ma  , am  ,  am  and

am  , with phases b , b ,   b and b all with amplitudes of 2/AB .

Usually the negative frequencies are ignored and just the positive frequencies are

kept; as m is bigger than a week get  bamAB  ,,2/ and  bamAB  ,,2/

where this time I express amplitude, frequency, and phase as a three dimensional
vector.

This means you could use the following notation to describe what has happened.

       bamABbamABbaAmB   ,,2/,,2/,,*,,

Clearly from this if we advance one phase by 90° and retard the other one by 90° we
get the following.

     2/,,*2/,,   baAmB

         2/2/,,2/2/2/,,2/   bamABbamAB

     bamABbamAB ,,2/,,2/

How about adding two frequencies that are the same together?

In this case we get two terms that appear when k=m so the amplitude and phase are
more tricky to work out.

So generally we can't say much more than the following two frequencies that are
exactly the same.

      ibiibi AeBemAeBebmAmB   ,,,,,,

However when the amplitudes are also the same we can simplify things.

      ibiibi AeAemAeAebmAmA   ,,,,,,

  ibiibi eemeeA   ,,

And if the phases are the same the amplitude doubles

      ibibibib eemeeAbmAbmA  ,,,,,,

  ibib emeA 2,,2 

 bmA ,,2

And if the phases differ by 180° the waves are of course going to cancel.

       iibiiibib eemeeAbmAbmA   ,,,,,,

   iibiiibib eemeeeA  ,,

  ibiibib eemeeA  ,,

 0,,0 m

0

This means it's critical that as well as the frequency being exactly the same the
amplitude has to be exactly the same along with the phase kept steady; a hardware
implementation assuring that the amplitude is exactly the same and the phase does not
move might be a bit tricky.

So putting it all together we get the following.

         2/,,*2/,,,,*,,   baAmBbaAmB

         bamABbamABbamABbamAB ,,2/,,2/,,2/,,2/

 bamAB  ,,

This is the same thing as what the schematic says in the very beginning.

Or we could just put the question directly into maple.

Giving the same answer as before of  bamAB  ,,

Extension for many frequencies

At the moment we are only raising one frequency up. What if we wanted to raise up
some arbitrary wave that contained many frequencies? To do many frequencies you
would have to delay the phase of each frequency you wish to raise by 90°. Lets
examine see how we might do this for an arbitrary signal f(t).

First take your arbitrary signal f(t). An arbitrary signal can be written as an infinite
series of waves.

     nnn taAtf cos

Each of these ways we retard by 90° to create our wanted signal.

     2/cosˆ nnn taAtf

We then perform a Fourier transform on this wanted signal.

       ktaAFktfF nnn  2/cosˆ 
         

n
i

nn
i

n fkeAfkeA nn   2/2/

     
n

i
nn

i
n fkeAifkeAi nn  

         
n

i
nn

i
n fkeAkifkeAki nn   sgnsgn as 0nf

        
n

i
nn

i
n fkeAfkeAki nn  sgn

     ktfFki  sgn This is multiplication in the frequency domain

    tftkiF  )(sgn1

This is equivalent to convolution in the time domain

So all we have to do is convolute our arbitrary signal f(t) with the inverse Fourier
transform of –isgn(k) to get our wanted signal.

Maple fails to find the inverse fourier transform of sign.

So we go back to basics.

   




  dkektkF iktsgn)()sgn(2
11

  



 dkktiktk)sin()cos(sgn2

1

   







 dkktkidkktk)sin(sgn)cos(sgn 2

1
2
1

 



 dkktki)sin(sgn2

1

Integral of an odd and even function is zero

   




  



 0

0

2
1)sin(sgn)sin(sgn dkktkdkktki

     




  



 0

0

2
1)sin(sgn)sin(sgn dkktkdkktki

   




  



002
1)sin(sgn)sin(sgn dkktkdkktki

 



0

)sin(sgn dkktki





0

)sin(dkkti





0

)cos(

t

kti

t

i

t

kti






)cos(

Problem, can’t evaluate as because does not converge at infinity. This is probably the
reason Maple can't find the inverse of the sign function; the Fourier transform of the
sign function doesn't seem to exist.

We can make a function that looks very similar to the sign function but one that
converges to zero at infinity; this will solve the non-convergence problem. The
following function is one that will do this.

















smallfor
ke

ke
k

k

k

0

0
)sgn(

This means we can write the inverse Fourier transform for the sign function as
follows.

  








02
1)sin(sgn dkkteidkek kikt 

 








0

22
)sin()cos(ktktt

t

ie k






maple

 
0

22
)sin()cos(ktktt

t

ie k












At infinity exp wins over sine and cosine

 )0sin()0cos(
22

0

ttt
t

ie












22 t

it





2t

it


Take limit of alpha going to zero

t

i


Maple can do the Fourier transform of this funnily enough

(this is signum)

So that means the following.

      tf
t

tftkiF  1
)(sgn1

And hence

   tf
t

tf 
1ˆ

This means we just convolute our arbitrary signal by 1/t to get our wanted signal.

  





 




d

tf
tf

)(ˆ

Now we find the discrete version of the above formula.

Define (discrete Fourier transforms) DFT







1

0

/2][][
N

x

NxyiexfyF 

DFT







1

0

/2][
1

][
N

y

NxyieyF
N

xf 

Inverse DFT

We start by sampling our signal.

     nnn xTaAxTfxf cos][

Do the DFT on the signal.

]][[][xfFyF 

For the continuous Fourier transform we multiplied the signal by -isgn(k) in the

frequency domain ie      ktfFki  sgn . Therefore we wish to do the same in the
discrete frequency domain, this means the values of y between 1 and N/2-1 inclusive
will get multiplied by –i, ones between N/2+1 and N-1 by i (as this is negative
frequency), and finally for y=0 and y=N/2 by 0 (we can't decide what the value of
sgn(0) is so let's take it be equal to zero).

Therefore we assume N is even then we can say the following.

















2/00

112/]][[

12/1]][[

][ˆ

Nyory

NyNxfiF

NyxfiF

yF

Perform the IDFT on this.















 





2/00

112/]]][[[

12/1]]][[[

]]][[ˆ[1

1

1

Nyory

NyNxfiFF

NyxfiFF

xfFF

This of course is the wanted signal.















 



2/00

112/]]][[[

12/1]]][[[

][ˆ 1

1

Nyory

NyNxfiFF

NyxfiFF

xf

This piecewise function can be written as the following.

 ]]][[)sgn()2/sgn([][ˆ 1 xfFyyNiFxf  

And once again as multiplication in the frequency domain is convolution in the time
domain we can say the following.

 ][])sgn()2/sgn([][ˆ 1 xfyyNiFxf  

Now we find the inverse of the discrete Fourier transform in the above formula.

   




 
1

0

/21)sgn()2/sgn(
1

])sgn()2/sgn([
N

y

NxyieyyNi
N

yyNiF 

  





1

0

)/2sin()/2cos()sgn()2/sgn(
1 N

y

NxyiNxyyyNi
N













1

0

1

0

)/2cos()sgn()2/sgn()/2sin()sgn()2/sgn(
1 N

y

N

y

NxyyyN
N

i
NxyyyN

N








1

0

)/2sin()sgn()2/sgn(
1 N

y

NxyyyN
N


as)sgn()2/sgn(yyN  is odd







1

1

)/2sin()sgn()2/sgn(
1 N

y

NxyyyN
N













1

12/

12/

1

)/2sin()sgn()2/sgn(
1

)/2sin()sgn()2/sgn(
1 N

Ny

N

y

NxyyyN
N

NxyyyN
N













1

12/

12/

1

)/2sin(
1

)/2sin(
1 N

Ny

N

y

Nxy
N

Nxy
N













1

12/

12/

1

)/)2/(2sin(
1

)/2sin(
1 N

Ny

N

y

NNvx
N

Nxy
N


Substituting y=v+N/2











12/

1

12/

1

)/)2/(2sin(
1

)/2sin(
1 N

v

N

y

NNvx
N

Nxy
N













 









12/

1

12/

1

)/2sin()/2sin(
1 N

y

N

y

xNxyNxy
N



 








 









12/

1

12/

1

)/2cos()sin()cos()/2sin()/2sin(
1 N

y

N

y

NxyxxNxyNxy
N













 









12/

1

12/

1

)/2sin()cos()/2sin(
1 N

y

N

y

NxyxNxy
N



 





12/

1

)/2sin()cos(1
1 N

y

Nxyx
N


















12/

1

2)/2sin(
2

sin
2 N

y

Nxy
x

N




Now the following equality I was unaware of, I'm not sure what it's called. Maple is
quite good with expanding summations of things.

Wolfram has the same expansion (http://mathworld.wolfram.com/Sine.html) but has

written it nicer as

 

 x

xN
Nx

nx
N

n 2
1

2
1

0 sin

)1(sin
2

sin

)sin(













We can use this expansion of the sum of sines to find a closed form.




































































N

x

N

N

xN

N

x

N

xyN

y 





sin

11
2

sin1
2

sin
2

sin
12/

1






































N

x

xN

N

x





sin

2
sin1

2
sin

 











































 

N

x

xN

N

x

x

N
yyNiF







sin

2
sin1

2
sin

2
sin

2
])sgn()2/sgn([21






































N

x

x

N

xx

x

N 





sin

2
sin

2
sin

2
sin

2 2





































































N

x

xx

N

x

N

xx

x

N 





sin

2
sin

2
cossincos

2
sin

2
sin

2

2

2

Now
0

2
cos 







 x

for any odd x and
0

2
sin 







 x

so

 










































 

N

x

N

xx

x

N
yyNiF







sin

cos
2

sin

2
sin

2
])sgn()2/sgn([

2

21



























N

xxx

N


cot

2
sin

2
sin

2 22



















N

xx

N


cot

2
sin

2 2

So finally we have a closed form for N being even. (there is also a version when N is
odd be we wont go into that here, One solution is good enough)

  

















N

xx

N
yyNiF


cot

2
sin

2
])sgn()2/sgn([21

Let’s first check that the response of this filter does what we want it to do.

Phase

Amplitude

So it attenuates the DC signal but all others are shifted by 90° and not attenuated;
that's pretty much what we wanted.

We now shift the IDFT result by –N/2 (so as to make the center at N/2 rather than 0)
and take account of the x being a multiple of N causing an undefined problem. This
results in the filter kernel (impulse response) h[x].

 






























else

N

x

N

Nx

xh

2

1
cot

2

12mod2/0

][


Formula 1: Hilbert kernel when N is even

With this kernel we can do the following to get the wanted signal. (the -N/2 is to say
this filter delays the signal by N/2 samples)

][]2/[ˆ xfhNxf 







1

0

][][]2/[ˆ
N

p

pxfphNxf

Formula 2: discrete convolution formula

Let's make sure that this filter does what we want to do and check with maple using a
sample rate of 48000 and a arbitrary sine wave signal of 1Khz and see if the wave is
shifted by 90°.

>

Note that a N/2 delay in the original wave is needed because the filter delays any
signal by N/2 samples.

90° out.

Difference between we wanted and what we got.

So it does indeed seem to. The amplitudes are the same and the waves are out of sink
with each other by 90°.

Putting it altogether

Formula 1 and Formula 2 create what is called a discrete Hilbert transform and
denoted by the letter H in the following block diagram. Along with an N/2 delay we
can create something that raises all frequencies of an arbitrary wave f[x] up by a
frequency G.

 xg

 xf

2






  2/)()(1 NxFGFGF 

][ˆ xg
]2/[ˆ Nxf 

 2/Nxf 

  2/)()(1 NxFGFGF 

  2/1 NxFGF 

We don't really want to raise every frequency up, frequencies above the hearing range
is not as any particular interest anyway. This being the case we also include a band
pass filter.

X

osc

X

2


H



DelayBPF

Also if N is divisible by 4 then we can say the following which is even simpler to
implement.




























 else
N

x

N

x

xh 1tan
2

02mod0

][

Implementing these filters as just plain convolution we test it out with the oscillator
set to 10 kHz.

The band pass filter is set to only permit frequencies between 300Hz and 5kHz
through.

Rather than adding the two final signals together if we subtract the two we end up
with the lower side band.

The code was implemented by just hacking the JMPX program. Here
http://jontio.zapto.org/hda1/ssbtest.zip is the source code if anyone's interested.

So yes it does work in real life too. The way I've implemented it here is not a
particularly good way as regular convolution is very CPU intensive, a better way
would be to use FFT convolution this is merely an extension of the current code.

What could be done next?

With a Direct Digital Synthesis (DDS) chip that has the ability to modulate both phase
and amplitude you could perform the same idea at RF frequencies. Initially I was
thinking of one of those five dollar DDS modules that you can get from ebay at the
moment but then I noticed they only have 11° phase resolution and no ability to adjust
the amplitude so it's not really suitable. However if there is a super cheap DDS
module out there or one is to appear that is suitable (like the AD7008) you could then
use a computer to directly modulate it without using a soundcard. The following
would do the trick.

Jonti
12/Jan/2014

