Shifting one frequency up

Say we want to move atone that we can hear that has a frequency a to a frequency of
mta. This frequency might be so high that we can’t hear it; how might we do this?

The schematic below shows one way of doing this.

Acos(ax + b) AB
¥ m 7[cos((m+ a)x+ (¢ + b)) + cos((m—a)x + (¢ —b))]
\J e
<
+
%X ‘ ABcos((m+ a)x+ (¢ + b))
& r’d
)
T T
—_— + -
2 2

< Becos(mx+ ¢+ 7/ 2)

g e I

Acos(ax+b-r/2) %[cos((er a)X+ (¢ + b)) + cos((M—)+ (§ — b) +)]

= AZB[cos((m+ a)x+ (¢ + b)) — cos((m—a)x+ (¢ —b))]

Why so complicated? We could have just mixed our frequency of a with

Bcos(mx +¢) put doing that creates C0S((M—2a)X+ (¢ —b)) as aterm. In RF literature
thisterm isin what is called the lower sideband (L SB). We only want

cos((m-+a)x-+ (¢ +b)) and thisisin the upper sideband (USB). Basically we want to
create asingle sideband (ssh) transmitter for just one frequency of a.

Cheating with maple

Using maple you can experiment with mixing things.

While maple can't even calculate the Fourier transform of sine from basic principlesit
does have afunction that will do it called “fourier”

int(sin(x) -exp(I-k -x), x =—infinity ..infinity);

undefined

With maple (13) performing a Fourier transform of Bcos(MX+¢) from the time
domain to the frequency domain we get the following.

with(MTM)
assume (phi> 0) : assume(m > 0) :
F(B-cos(m-x + phi)) (k) = fourzer(B.cosI(,;in-x + phi), k) :

F(Bcos(m~x + ¢~)) (k) =B (el¢h Dirac(k — m~)

+e ' Dirac(k + m~))

This meansBCOS(MX+¢) has afrequency of M with phase ¢ aswell as afrequency

of —M with phase ~ ¢, both with amplitude B. The positive frequency mis probably
no surprise but the negative frequency —M might be new to you.

Now we mix two cosines together.

assume (phi> 0) : assume(m > 0) : assume(b > 0) : assume(a
>0):

F(B-cos(m-x + phi)-A-cos(a-x + b)) (k)
_ Jourier (B-cos(m-x + phi)-4-cos(a-x + b), k)
Pi ’

F(B cos(m~x + ¢~) 4 cos(a~x + b~)) (k)

= % B A (efl 0= el b~ Dirac(k + m~ — a~)

el ettt Dirac(k — m~+ a~) + e 10t Dirac(k

+ m~+a~) + S Dirac(k — m~ — a~)>

This time we get four nonzero locations at frequencies a—m, m—-a, —(m+a) and
m-+a, with phases D=9, ¢ —b, —(0+9) and D+¢ all with amplitudes of AB/2.

Usually the negative frequencies are ignored and just the positive frequencies are

kept: as mis bigger than a week get [AB/2,m+a,6 +b| gng [AB/2,m-a,4 - b]
where thistime | express amplitude, frequency, and phase as a three dimensional
Vector.

This means you could use the following notation to describe what has happened.

[B,m,¢]*[A a,b]l=[AB/2,m+a,¢+Db|+[AB/2,m-a,é-b]

Clearly from thisif we advance one phase by 90° and retard the other one by 90° we
get the following.

[B,m,(¢p+7/2)]*[Aa(b-7/2)]
=[AB/2,m+a,(¢+7/2)+(b—n/2)]+[AB/2,m-a,(p+x/2)-(b-n/2)]
=[AB/2,m+a,¢+b]+[AB/2,m-a,4—b+ 7]

How about adding two frequencies that are the same together?

F(B-cos(m-x + phi)-A-cos(m-x + b)) (k)
_ Jourier (B-cos(m-x + phi) + A-cos(m-x + b), k)
Pi ’

F(B cos(m~x + ¢~) A cos(m~x + b~)) (k) = Dirac(k
—m~) B e Dirac(k — m~) 4 ¢! b~ 4 Dirac(k

+ m~) B e 1y Dirac(k + m~) Ae 17~

In this case we get two terms that appear when k=m so the amplitude and phase are
more tricky to work out.

polar(B 4 u elb);
polar(‘B SRR b‘, argumcnt(B SRR b))

So generally we can't say much more than the following two frequencies that are
exactly the same.

[B.m.¢]+[Amb]=|Be? + Ae®|, m, £(Be" + Ae®
However when the amplitudes are a so the same we can simplify things.

[Am¢]+[Amb]= "Ae”’ + Ae”|,m, Z(Ae? + Ae“’)J
= [A{e”’ +e°|,m, (e + e‘b)J

And if the phases are the same the amplitude doubles

[A,mb]+[A mb]= Meib + e“”|, m, £(e® +e”)J
= [Azleib|, m, 2(2¢")|

=[2A,m,b]

And if the phases differ by 180° the waves are of course going to cancel.

[Amb]+[Amb+r]= Weib +ebir| m, Z(ei‘p + @ibi)J
= lAleib +ebe| m, L(eiq) 4 btin)J

= Me‘b - e“”|, m, A(ei‘” —e®)J

=[0,m,0]
=0

This meansit's critical that as well as the frequency being exactly the same the
amplitude has to be exactly the same aong with the phase kept steady; a hardware
implementation assuring that the amplitude is exactly the same and the phase does not
move might be a bit tricky.

So putting it al together we get the following.

[B,m,¢]* [Aa,b]+[B,m(p+7/2)]*[Aa(b-7/2)]
=[AB/2,m+a,$ +b]+[AB/2,m-a,—b]+[AB/2,m+a,¢+b|+[AB/2,m-a,¢ —b+ 7]
=[AB,m+a,¢ +b]

Thisis the same thing as what the schematic says in the very beginning.

Or we could just put the question directly into maple.

F(B-cos(m'x + phi)-4-cos(a-x + b) + B'cos(m'x + phi+ %)

-A'cos(a'x +b— %))(k) = %(fourier (B-cos(m'x

+ phi)-A4-cos(a-x + b) + B~cos(m-x + phi+ %] -A~cos(a

Pi
wro- B)a))

F(B cos(m~x + ¢~) 4 cos(a~x + b~) — B sin(m~x
+ ¢~) A sin(a~x + b~)) (k) =B 4 (Dirac(k — m~

— a~) et FIb- Dirac(k + m~+ a~) c_lq%_”%)

Giving the same answer as before of [AB,m+a,¢ +b]

Extension for many frequencies

At the moment we are only raising one frequency up. What if we wanted to raise up
some arbitrary wave that contained many frequencies? To do many frequencies you
would have to delay the phase of each frequency you wish to raise by 90°. Lets
examine see how we might do thisfor an arbitrary signal f(t).

First take your arbitrary signal f(t). An arbitrary signal can be written as an infinite
series of waves.

f(t)=>" A cosla,t+4,)

Each of these ways we retard by 90° to create our wanted signal.

f(t)=> A coslat+¢,-x/2)
We then perform a Fourier transform on this wanted signal.

F|f (©)fk)=F[> A, coslat +¢, - 7 /2)|K)

=> AU 5 (k—f,)+> Ae A5 (k+ f,)

=—iy Aehs(k—f,)+> Aes(k+f,)

=—isgn(k)D Ae"s(k—f,)-sgn(k)y. Aesk+f,) o f,>0
——isgn(k)>. Ae*s(k—f,)+> Ae*5(k+ 1,)|

=i sgn(k)x F[f (t)](k) Thisis multiplication in the frequency domain

= F[-isgn(k)lt) = £ (¢) Thisis equivalent to convolution in the time domain

So al we have to do is convolute our arbitrary signal f(t) with the inverse Fourier
transform of —isgn(k) to get our wanted signal.

Maple failsto find the inverse fourier transform of sign.

ifourier (signum(k), k, t);
invfourier (signum(k), k, t)

So we go back to basics.

F*fsan()]t) =4 [san(k)e™dk

=4[sgn(k)[cos(kt) +isin(kt) Jdk

=4[sgn(k)cos(kt)dk +i4 [son(k)sin(kt)dk

= %Lo sgn(k)sin(kt)dk Integral of an odd and even function is zero
fw sgn(k)sin(kt)dk + j: sgn(k)s n(kt)dk}

iaf j:sgn(— k)sin(-kt)(- dk)+ ["sgn(k)s n(kt)dk}

I j: sgn(k)sin(kt)dk + j: son(k)s n(kt)dk}

i j: sgn(k)sin(kt)dk
=i j:sin(kt)dk

0

N[~

Il
N[~

N[~

_ —icos(kt)
ot

_ —icog(kt)|” i
ot t

o

Problem, can’t evaluate as because does not converge at infinity. Thisis probably the
reason Maple can't find the inverse of the sign function; the Fourier transform of the

sign function doesn't seem to exist.

We can make afunction that looks very similar to the sign function but one that
convergesto zero at infinity; thiswill solve the non-convergence problem. The
following function is one that will do this.

e k>0
n(k) = for small o
san(k) {—e‘”k k<0

.

This means we can write the inverse Fourier transform for the sign function as
follows.

1 f; sgn(k)e" dk ~ i j: e * sin(kt)dk

ik ®
=~ (tcos(it) + asin(kt)
a” +1 o maple
e :
=— t2(tcos(kt)+asm(kt)
a + 0 At infinity exp wins over sine and cosine

Hpere]

=% (tcos(0t) + asin(0L))

a’+12

it
a®+t?
_it
t? Takelimit of aphagoing to zero
[
t

Maple can do the Fourier transform of this funnily enough

fourier (%)
Pi
-14+2 Hcavisidc(w) (thisis signum)

So that means the following.

F [~ isgn(k)t) * f(t):%* fv)

And hence

ft)=>+10)

t

This means we just convolute our arbitrary signal by 1/t to get our wanted signal.

fo)-] 1D,

I
Now we find the discrete version of the above formula.

Define (discrete Fourier transforms) DFT

N-1
FIyl =Y. X"
xz=;' DFT

1 N-1 .
fIx]==> Fly]e?'"
N 3% Inverse DFT

We start by sampling our signal.
f[x]= f(xT)=> A cos(axT+g,)
Do the DFT on the signal.

FLy] = FLf[X]]

For the continuous Fourier transform we multiplied the signal by -isgn(k) in the

frequency domainie ~! sgn(k)x F[f (t)k) . Therefore we wish to do the samein the
discrete frequency domain, this means the values of y between 1 and N/2-1 inclusive
will get multiplied by —i, ones between N/2+1 and N-1 by i (asthisis negative
frequency), and finally for y=0 and y=N/2 by 0 (we can't decide what the value of
sgn(0) isso let'stake it be equal to zero).

Therefore we assume N is even then we can say the following.

—iF[f[X]] 1< y<N/2-1
F[y] =<iF[f[X]] N/2+1<y<N-1
0 y=0o0ry=N/2

Perform the IDFT on this.

FA-iF[f[X]]] 1<y<N/2-1
FAFLfIXI = FF[] N/2+1<y<N-1
0 y=0o0ry=N/2

This of course isthe wanted signal.

FU-iF[f[X]]] 1<y<N/2-1
f[x]={FY[iF[f[X]]] N/2+1<y<N-1
0 y=0o0ry=N/2

This piecewise function can be written as the following.

f[x]=F[(~isgn(N/2-y)sgn(y))x F[f[x]]]

And once again as multiplication in the frequency domain is convolution in the time
domain we can say the following.

f[X]=F(-isgn(N/2- y)sgn(y))] * f[x]
Now we find the inverse of the discrete Fourier transform in the above formula
1

F[(~isgn(N/2- y)son(y))] =

-1

> (-isgn(Ns2- y)son(y)e "

=z
Z|

—_

(—isgn(N/2- y)sgn(y))(cos(2zxy/ N) +isin(2zxy/ N))

Il
Zlk Z|+
T
o

2
IR

sgn(N/2-y)sgn(y)sin(2zxy/ N)—li\lngn(N/Z— y)sgn(y) cos(2zxy/ N)

y=0

o

<

1 N-1 .
==>"sgn(N/2-y)sgn(y)sin(2zxy/ N)
N as SI(N /2= y)san(y) i odd

— X san(N /2=) sgn(y) sin(2ay/ N)

y=1

1 N/2-1

N D sgn(N/2- y)sgn(y)sn(me/Nhﬁ ngn(N/Z y)sgn(y)sin(2zxy/ N)
y=1 y=N/2+1

1 N/2-1 1

= Y sin(2mxy/ N)-— Zsm(any/N)

N y=1 N y=N/2+1

1 N/2-1 1

= Y sin(2mxy/ N)-— Zsm(an(v+ N/2)/N)

N y-1 N y\T2u Substituting y=v+N/2
N/2-1 N/2-1

= Zsm(Zﬂxy/N)—— D sin(2ax(v+ N/2)/N)

N y=1 N v=1

l N/2-1 N/2-1

=N > sin(2zxy/ N) - ZSin(any/NHzx)j
y=1 y=1

:; N’f&n(zﬂxy/N) N/ZZ: sm(27zxy/N)cos(nx)+sn(nx)cos(2ﬁxy/N))J

y=1 y=l

1 N/2-1 N/2-1

=—| Y sin(2axy/ N) —cos(zx) Y sin(2zxy/ N)j

N y=1 y=1

N/2-1

- ;(1— cos(nx)) > sin(2mxy/ N)

y=1

N/2-1
_2gn? (ﬂxj D sin(2zxy/ N)
N 2)=

Now the following equality | was unaware of, I'm not sure what it's called. Mapleis
quite good with expanding summations of things.

Sum(sin(n-x),y =0.N) = (sum(sin(n-x),x =0..N));
N

1 sin(n)cos(n (N+1)) 1 sin(n (N+ 1))

sin(n x) = 5 cos(n) — 1 2

y=0
1 sin(n)
2 cos(n) — 1

Wolfram has the same expansion (_ http://mathworld.wolfram.com/Sine.html) but has
written it nicer as

sn('\;"j inf1 (N +1)x]

sin(3x)

ZN:Sin(nx) =

We can use this expansion of the sum of sinesto find a closed form.

T e u b

N

sin(
= F[(~isgn(N/2-y)sgn(y))] = %smz(%j

72X (X
co{—j =0 S n(—} =0
Now 2 for any odd x and 2 s0

N

:F1[(—isgn(N/2—y)sgn(y))]=§gnz[ﬁj 2(
sin

oz {z)ef)
ozl

So finally we have a closed form for N being even. (thereisaso aversion when N is
odd be we wont go into that here, One solution is good enough)

F[(~isgn(N/2-y)sgn(y))l = %smz(%j cot[%}

Let’sfirst check that the response of thisfilter does what we want it to do.

Digits = 16:
with(DiscreteTransforms) :
with(plots) :

N2 i
h = x— piecewise (x mod N # 0, i'Sin(P12x) ~C0t(P;Vx)]

N
ssinf Le) coll B
SIHZTE)C CO N

X — piecewise [x mod N # 0, N

N = 64; plot([seq([x,h(x)],x=0.N—1)]);
64

0.6 o

0.4+

0.2+

-0.2 1

0.4

-0

7 = Vector(

seq[h(x),x=0..%),seq(0,y=0..2000— 1—N

- 1),seq(h(x),x=% +1.N— IJD :
X = FourierTransform (Z) :

pzot[{ seq([k, argume;ti(X[k]) -180],k=1..0p(X) [1])

},x=0
Lop(X)[1] - 1];

plot({[f)eq([k,abS(X[k])],k= L.op(X)[1D]}, x=0.0p(X)[1]

-&0

20 4

T I T I T T T T T T I T T T I T I T
00 400 400 200 10p0 1200 1400 1600 1200

X

0.020

0.015 1
0.010 +

0.005 H

Phase

1]
1]

T
200

400 00 200 1000 1200 1400 1600 1=00

X

Amplitude

So it attenuates the DC signal but al others are shifted by 90° and not attenuated;
that's pretty much what we wanted.

We now shift the IDFT result by —-N/2 (so as to make the center at N/2 rather than 0)
and take account of the x being a multiple of N causing an undefined problem. This
resultsin the filter kernel (impulse response) h[x].

0 (x=N/2)mod2=1

hix]=42 cot((X —ED ese
N N 2

Formula 1: Hilbert kernel when N is even

With this kernel we can do the following to get the wanted signal. (the -N/2 isto say
thisfilter delays the signal by N/2 samples)

f[x—N/2]=h* f[X]

fIx=N/2= > hp] f[x- p]

p=0
For mula 2: discrete convolution for mula

Let's make sure that this filter does what we want to do and check with maple using a
sample rate of 48000 and a arbitrary sine wave signal of 1Khz and seeif thewaveis
shifted by 90°.

> with(ArrayTools) : with(plots) : with(DiscreteTransforms) :

N = 100'N'=N;
Digits == 32

Buffer = convert(Vector N), list) :

row (

h = xﬁpiecewise((x — %) mod 2 = l,evalf(%'cot(Pi' (

-2))))

= ([seq(h(x),x=0.N—1)]):
plot([seq([x Vector([op(H)])(x + 1)],x=0..N — 1)]);

X
N

X — piecewise [(x — % J mod 2 =1,

(=te(-2)]

evalf

0.6

0.4

0.2+

I:I v | ST 2 . v 1 v I ' 1 ' !

20 3 00 a0 TO B0 90

-0.2

~04 -

-0 +

|— Kernel |

circlebuff ‘=proc(f1 :: scalar) :: list

global Buffer, N;

#Buffer :=[op (subsop (1 =NULL, Buffer)),f1];
Buffer := [f1,op(subsop (N =NULL, Buffer))] ;
end proc:

convol =proc(signal :: scalar) :: scalar
global Buffer , H, N;

local p;

circlebuff (signal);

sum('Buffer [p]-H[p],p=1..N);

end proc:

E :==2100:
S :==2000:
F :=1000:
Y ="Y"Z:="2"
Z = |se [X convol(evalf(sin(X2 Pi F))j x=0 E) :
T 43000 X =0-E |
(x—%) -2-Pi
Y = |seq| |x, evalf| sin 23000 ,x=0.E
(x—ﬂ 2P1
U = |seq| |x, evalf | sin 2 . —P—
’ 48000 2
. (x-2-Pi
convol(evalf(sm[43000 ,x=0.E
plot({Y,Z},x=S ..E);
plot(U);

Note that a N/2 delay in the original wave is needed because the filter delays any
signa by N/2 samples.

"
|:|: : .
: EDIﬁD Ell:ll:l

90° out.

0.5 5

P
1 500 1000 1500 2000

-0.5 4

-1 4
Difference between we wanted and what we got.

So it does indeed seem to. The amplitudes are the same and the waves are out of sink
with each other by 90°.

Putting it altogether

Formula 1 and Formula 2 create what is called a discrete Hilbert transform and
denoted by the letter H in the following block diagram. Along with an N/2 delay we
can create something that raises all frequencies of an arbitrary wave f[x] up by a
frequency G.

i f[x-N/2]
i F(G+F)+(G-F)[x-N/2]
Delay —@ /
ol > FiG+ F]x-N/2]
H +
f[X_N\/i] - glx
—O— "
FY(G+F)-(G-F)[x-N/2]|

We don't really want to raise every frequency up, frequencies above the hearing range

IS not as any particular interest anyway. This being the case we also include a band
pass filter.

—1 BPF Delay —@

Alsoif N isdivisible by 4 then we can say the following which is even ssimpler to
implement.

0 xmod2=0
h(x] = 3tan(ﬂ(l—ij) ese
N N

Implementing these filters as just plain convolution we test it out with the oscillator
set to 10 kHz.

2:54:41 p.m. \ ‘w*

i 'l\t F lzl
5,544 Hz il
2:54:35 pm. | || ‘ i .I 'lb M EH

1\"»!

(e

IH}

TR ST PR T vy W DR
LoE 0D0D.0D00D.000D

Tunennnn ﬂ'lﬂ nnn

: & JMPX Encoder, : E]@

In Cut
modulate

[ise

Soundcard [F5] .
Bandwidth [F6]
Options [F7]
Help /Update [F1]

Full Sereen [F11]

10000Hz
Minimize [F3]

Primary Sound Driver r——
T y e e— BN Rew 5.9 Hz :
. s = — Spectrum Se— 200M e s SpEE

The band passfilter is set to only permit frequencies between 300Hz and 5kHz
through.

Rather than adding the two final signals together if we subtract the two we end up
with the lower side band.

R S - mas

= 3 EEEN rewW 1.5Hz
e —— Spectrum #sss—— Zoom

LOA nnnn nnn nnn

Tune DD ﬂ ' ﬂ nnn

=0 JMPX [ncnder
modulate
Soundcard [F5] n g
Bandwidth [F6] =t 000 000 4000
Options [FT]
Help / Update [F1]
Full Screen [F11]

| 10000Hz

Minimize [F3] il
T - | \Primary Sound Driver = = EEEN rRowW 5.9 Hz
i (F4) 5 o me— Spectrum ¢es——— Z00m i Spee

The code was implemented by just hacking the IMPX program. Here
http://jontio.zapto.org/hdal/ssbtest.zip is the source code if anyone's interested.

So yesit doeswork in real lifetoo. The way I've implemented it hereis not a
particularly good way as regular convolution is very CPU intensive, a better way
would be to use FFT convolution thisis merely an extension of the current code.

What could be done next?

With a Direct Digital Synthesis (DDS) chip that has the ability to modulate both phase
and amplitude you could perform the same idea at RF frequencies. Initialy | was
thinking of one of those five dollar DDS modules that you can get from ebay at the
moment but then | noticed they only have 11° phase resolution and no ability to adjust
the amplitude so it's not really suitable. However if there is a super cheap DDS
module out there or oneisto appear that is suitable (like the AD7008) you could then
use a computer to directly modulate it without using a soundcard. The following
would do the trick.

—1 BPF Delay

Phase

Cartesian
to polar

DDS
] -/

Amplitude

Jonti
12/Jan/2014

