
PSK31:

Performance investigation and LDPC code

improvement.

Jonathan Olds

jontio@i4free.co.nz

May 12, 2015

Abstract

As a reference I wanted to know how PSK31 performed. I was inter-

ested in performance with regard to power requirements, energy e�ciency,

and ability to cope with HF conditions. I then wanted to know what im-

provement if any could be obtained using FEC codes. What follows is

my investigation and understanding doing this. My �ndings are PSK31 is

okay but it could be improved with FEC codes, and in particular soft de-

coding using LDPC codes with a doubling of the constellation size seemed

to be quite e�ective without reducing net bit rate. PSK31 appears to be

reasonably well-suited for the mid-latitude conditions but not so well-

suited for low or high latitude conditions. Everything was simulated in

Matlab and some source code is included. This investigation is laid out

and written as I did it.

Calculating the power of a signal

Given a DC voltage V over a resistor R the power being dissipated in the resistor
is V 2/R. Given a real signal x in volts fed into the resistor, the instantaneous

power is x2/R. The average power which is more useful is 1
RT

´ T
0
x (t)

2
dt, or if

the signal is digitalized then 1
RT

∑T−1
n=0 x [n]

2
. For a sine wave this is average is

well known and tends to V 2
Pk/ (2R) where VPk is the peak voltage of the sine

wave. As we are only interested in calculating signals that have been digitalized
we use the summation way of averaging rather than the integration way.

Noise density (No)

Additive white Gaussian noise (AWGN) is a random noise with the Gaus-
sian distribution with zero mean and sounds like hissing as found on an un-
trained radio. Let noise = ℵ (0, varn). Then the average power is Powerave =
1

RT

∑T−1
n=0 noise [n]

2
. We notice that 1

T

∑T−1
n=0 noise [n]

2
is the expectation of

1

the noise squared in our sequence of samples; this is denoted as E
[
noise2

]
=

1
T

∑T−1
n=0 noise [n]

2
. With enough samples the mean noise is equal to E [noise] =

1
T

∑T−1
n=0 noise [n] = 0 as the noise is de�ned as having zero mean. Therefore

while the average power is technically Powerave =
1
RE

[
noise2

]
we can say that

Powerave ≈ 1
R

(
E
[
noise2

]
− E [noise]

2
)

= 1
Rvar (noise) if we have enough

noise samples.

The noise density is the power of the noise over some bandwidth divided by
the bandwidth itself. AWGN has a �at spectrum in the frequency domain
meaning the noise density is invariant to the bandwidth chosen. Because of
this it means that we can calculate the noise density by obtaining the average
power over any arbitrary bandwidth and then divide this by the bandwidth.
For a digitalized signal the maximum frequency that can be represented in its
is called the Nyquist frequency and is half the sampling rate. If we denote the
sampling rate of our noise samples as Fs , then the bandwidth we are calculating
the total average power over is Fs/2. Hence No = 2

RFs
E
[
noise2

]
where No is

the noise density. Noise density removes the dependence that sampling rate has
on the average power of the noise.

Energy per bit (Eb)

A signal sig has an average power Powerave =
1
RE

[
sig2

]
; this average power is

usually denoted as C. For transmitting a signal that contains digital information
it takes time to send a bit of information. If it takes f−1

b seconds to send one
bit of information (i.e a net bit rate of fb Hz) then the total energy to send one
bit is Eb = Cf−1

b as time times power is energy. therefore Eb = 1
Rfb

E
[
sig2

]
or

Eb ≈ 1
Rfb

var (y) for well behaved functions.

Energy per bit to noise power spectral density ra-
tio for AWGN (Eb/No)

Combining energy per bit and noise density if we consider noise to be AWGN

we obtain Eb/No =
FsE

[
sig2

]
2fbE [noise2]

. It has no units and is usually expressed in

decibels.

Eb/No = 10 log10

(
FsE

[
sig2

]
2fbE [noise2]

)
(1)

Energy per bit to noise density expressed in decibels

The mean of the squared signal and/or the noise can be replaced using variance
most of the time if you want.

2

Calculation of Eb/No in Matlab

From equation (1) for a signal called sig and AWGN called noise the following
will work.

EbNo=10* l og10 ((Fs*mean(s i g .^2))/ (2* fb *mean(no i s e . ^ 2)))

However, there are other ways to calculate Eb/No in Matlab, the following show
a few that are exact or close enough.

EbNo=10* l og10 ((Fs*sum(abs (f f t (s i g) /numel (s i g)) .^2)) /(2* fb
*var (no i s e)))

EbNo=10* l og10 ((bandpower (s i g) / fb) /(bandpower (no i s e) /(Fs
/2)))

EbNo=10* l og10 (Fs *(bandpower (s i g)) /(2* fb *var (no i s e)))
EbNo=10* l og10 ((Fs*var (s i g)) /(2* fb *var (no i s e)))

All should pretty much return the same values.

Adding noise to a signal

Given an Eb/No in dB and a signal we can calculate the AWGN variance and
create noise to be added to the signal. Rearranging equation (1) we see the
required variance of the noise to be the following.

var (noise) =

 FsE
[
sig2

]
2fb10

Eb/No
10




From this we can generate normally distributed random numbers with a zero
mean and this particular variance which will be our noise to add to our signal.
In Matlab this can be done as follows.

EbNo=5;%wanted EbNo in dB

%ca l c u l a t e var i ance o f no i s e f o r AWGN given wanted EbNo
Eb=mean(s i g .^2) / fb ;
No=Eb/(10^(EbNo/10)) ;
varn=No*(Fs /2) ;

%c r ea t e the no i s e
no i s e = normrnd (0 , s q r t (varn) , numel (s i g) , 1) ;

%add no i s e to the s i g n a l
s i g=s i g+no i s e ;

3

There is a Matlab function that is supposed to add a certain amount of AWGN
to signals but for an understanding I have gone for �rst principles instead.

Bit error rate (BER)

The bit error rate is the probability that one bit of information will be incorrectly
decoded by the receiver. The bit itself is part of the message wishing to be sent
from the transmitter to the receiver; bits that make up FEC and so forth and
not counted. To calculate BER you count the number of bits that went wrong
and divide this by the number of bits you received. BER versus EbNo gives a
way to compare the energy e�ciency of modulation and coding schemes with
one another. For a particular BER the smaller the EbNo is, the smaller the
energy required to send information is.

Matlab has a function called berawgn that calculates the theoretical BER for
a given EbNo SNR. Creating a program in Matlab that could generate and re-
ceive the amateur radio protocol PSK31 through the soundcard I added various
amounts of EbNo to this audio signal in the passband using the previous Mat-
lab listing and divided the bits that were incorrect by the total number of bits
received which is BER by de�nition. I then plotted these measurements along
with theoretical values obtained from the berawgn function. This can be seen
in the following �gure.

Figure 1: BER versus SNR: PSK31 simulation in passband versus theoretical

PSK31 is actually di�erentially encoded and should really be called DPSK31.
Di�erential encoding is where the ones and zeros that make up the message
are encoded as phase transitions rather than absolute phase values. This makes
receiver design a lot easier and the receiver never experiences catastrophic loss of
synchronization as can happen when not using di�erential encoding. However,
if one bit goes wrong there's a high probability that the next bit will also be
wrong, this produces a greater BER for a given EbNo.

4

I am aware that there was no need to convert the baseband to the passband but
I wanted to put the noise on the passband rather than the baseband for other
reasons.

Running sound from Matlab via VB audio virtual cable to FLDIGI at 8 dB
EbNo, FLDIGI decoded my message as �This is a¤SK31 test with AWGN added
to the signal.�. At 6 dB I got �Thet iMa PSK31 eest with AW tN addef to the
signal.�. So it looks like around 8 dB or a 99.9% probability of a successful bit
transmission is needed for what I would consider reasonably acceptable commu-
nication but not perfect.

Reducing BER of PSK31 without increasing Eb/No
or decreasing the net bit rate of PSK31

Other modulation schemes could be used but the only unencoded scheme I know
that beats PSK31's DBSPK modulation is BPSK and has an improvement of
around 1 dB of Eb/No from what I can see but others say 2 dB. However, BPSK
can be tricky to decode compared to DBPSK, therefore let's stick with DBPSK.

To reduce the bit error rate forward error correction (FEC) can be used. FEC
means adding redundancy which means more data has to be sent which generally
decreases net bit rate which I don't want. However let's �rst consider what
happens, decreasing bit rate means bits take longer to be sent and hence Eb/No
goes up but at the same time decreases BER. If BER goes down more than
Eb/No goes up you can win for high enough Eb/No values and get a reduction
in BER for a �xed Eb/No; this improvement is called coding gain. To measure
the coding gain you have to specify a BER. To me it seems a BER around 10−5

(99.999% probability of a successful bit transmission) is an appropriate place to
calculate coding gain and from what I've seen the seems to be a common place
it is measured.

5

Figure 2: Coding gain

Trellis coded modulation (TCM) implements FEC without reducing net bit rate.
It does this by increasing the constellation size so data can be sent quicker. For
example, a BPSK is changed into a QPSK doubling the throughput meaning
a 1/2 FEC convolution encoder can be used without a�ecting the net bit rate.
The constellation and the convolution encoder in TCM are combined. So let's
see if we can make a di�erential TCM scheme for PSK31.

Matlab has no di�erential TCM but with a little bit of experimentation I think
I have managed to clobber one together from a non-di�erential one. The �gure
below shows theoretical results for BPSK, DBPSK (as used in PSK31) and
DQPSK, in addition to my TCM-DQPSK.

6

Figure 3: TCM-DQPSK BER versus Eb/No

The net bit rate of TCM-DQPSK is identical to PSK31 but at a BER of 10−5

a gain of around 1 dB of EbNo can be obtained compared to DBPSK. TCM is
easy to implement and I am surprised that no one has added this slight change
to PSK31 for ham mode. The latency introduced with this modi�cation to
PSK31 would be 0.5 seconds for my implementation of it which would hardly
be noticed. The bandwidth and the net bit rate would still be the same.

This simulation I added the AWGN to the baseband and never went into the
passband and back down again as I did with PSK31.

Trying turbo codes

In Matlab I played around with turbo codes which is some sort of FEC that
uses two convolutional coders in some sort of interleaving thing to produce
codes that are apparently quite good. The best performance that seems to be
obtained from them is to use soft decoding. Soft decoding is where you express
the likelihood that a particular received symbol is say a one rather than saying
it is de�nitely a one. This allows the decoder to weight paths accordingly. I was
wanting a 1/2 rate encoder but the smallest one seems to be 1/3 (one for the
original data and to for both of the convolutional encoders) therefore I had to
puncture the code by removing every third element to obtain a 1/2 rate encoder.
In Matlab you supply a block of data to a turbo encoder and it doesn't seem
to be able to be added bit by bit. The block of data has to align up exactly for

7

the decoder to be able to decode it. This is a hassle as it requires some form of
aligning the data correctly and the data is decoded block by block rather than
a bit at a the time making the text output kind of jerky. Anyway, assuming
the blocks have been aligned correctly I increased the constellation size to 4 and
used DQPSK to send the encoded data; this way the net bit rate was again the
same as PSK31. Simulating this I obtain the following �gure.

Figure 4: Turbo code DQPSK BER versus Eb/No

This time there appears to be a gain of around 2.5 dB

This simulation I added the AWGN to the baseband and never went into the
passband and back down again as I did with PSK31.

LDPC

Low density parity check (LDPC) codes are some sort of FEC codes that are
linear block codes. They have an interesting history of being invented in 1960
and more or less forgotten until 1996. Along with turbo codes they are cur-
rently hot topics in coding theory and applications. Like turbo codes they are
apparently very good codes and seem to be battling it out as to who wins. Such
codes are used for television like SVB-S2, DVB-T2, wi� like 802.11n and so
forth (http://www.ldpc-decoder.com/en/ldpc-decoder-applications). A
short introduction that I found useful can be found http://www.bernh.net/

media/download/papers/ldpc.pdf. It seems the downside of LDPC codes

8

http://www.ldpc-decoder.com/en/ldpc-decoder-applications
http://www.bernh.net/media/download/papers/ldpc.pdf
http://www.bernh.net/media/download/papers/ldpc.pdf

is that they have to be reasonably long for them to be any good. From my
mucking around with them on Matlab they are represented using a gigantic
matrix mainly full of zeros, or what is called a sparse parity matrix. Mat-
lab only comes with the DVB-S2 parity matrix and doesn't give you any help
on how to create other parity matrices for di�erent applications. However,
http://www.ldpc-decoder.com/en/ldpc-decoder-applications have a list
of standards that use LDPC codes along with documentation that have a short-
hand notation for such matrices. I obtained two di�erent parity matrices 802.11n
and one called G.9960, both are half rate encoders and have some of the short-
est codewords I could �nd at 648 and 336 bits respectively. This means for
PSK31 it would take approximately 10 seconds to send one G.9960 code or for
QPSK at 31.25 bps 5 seconds. In Matlab the LDPC decoder has a soft decision-
making process the same as I mentioned with turbo codes. Decoding of these
codes uses something called belief propagation which is an iterative method and
seems faster than whatever turbo codes use.

Like Matlab's turbo codes LDPC codes are sent block by block making the
text output jerky and the blocks have to align properly. Somehow the receiver
has to align the bits it obtains after demodulation. I didn't want to include any
preamble so as to not include any overhead in the channel. To do this means the
receiver has to �nd the codeword alignments unaided. For �nding the alignment,
when a bit came in, it was added to a bu�er and soft decoding was done with
only one or two iterations, the number of zeros in the parity check was then
summed up. The idea was if the data received was aligned correctly then the
received data would look more like a codeword than if it wasn't meaning more
zeros would be in the �nal parity check. Performing this every bit that came
in, along with a peak search the following �gure was obtained for the 802.11n
using DBPSK at 31.25 bps with an Eb/No of 6 (very noisy conditions). For all
experiments using LDPC I created the passband signal and added the AWGN
to that before the standard symbol tracking and frequency tracking etc.

9

http://www.ldpc-decoder.com/en/ldpc-decoder-applications

Figure 5: Finding alignment of LDPC codes in bit stream without preamble

As can be seen there are clear peaks that represent the boundaries between
codewords. I would imagine in the greater scheme this is an incredibly CPU
intensive task but as the bit rate is so slow it's laughable, a standard PC can
do this without any problem at all.

Initially the program I wrote might obtain alignment but then an erroneous
peak would appear that would unalign the code words again with disastrous
results. A �x was to have a sort of reinforcement of a particular alignment
which worked.

Setting an EbNo of 5.5 dB which is so noisy I could barely hear anything that
sounded like a signal, and is way below the 10 dB EbNo required for normal
PSK31 transmission, I ran my program with automatic alignment of codewords
as just described and obtain the following picture.

10

Figure 6: DBPSK at 31.25 bps (net bit rate 15.625 bps), EbNo 5.5 dB, through
sound card, automatic symbol timing, frequency timing, and codeword align-
ment. Characters using varicode. 324x648 LDPC code.

The �rst gobbledygook is mainly the thing trying to �gure out the correct code
alignment and symbol timing. There is no frequency o�set in this test. You
can see the received points do not look anything like what the constellation
should be, but even still, it somehow manages to correctly decode every single
codeword after that has correct alignment; this I �nd really really amazing. Of
course as I was using BPSK the net bit rate was 15.625 bps (about 25 words
per minute), which is a little slow I fear for most HAMs.

Switching over to DQPSK meant the speed went up to 31.25 net bps again
(31.25 symbols a second). This time the AWGN was added to the passband for
the BER versus EbNo plots. the following two �gures show the results obtained
from using the DVB-S2 and G.9960 LDPC codes.

11

Figure 7: Fully automated passband reception of DQPSK at 31.25 symbols a
second using DVB-S2 LDPC code

12

Figure 8: Fully automated passband reception of DQPSK at 31.25 symbols a
second using G.9960 LDPC code

The net bit rate for both of these codes were 31.25 bits per second the same
as PSK31 in addition to the same bandwidth as PSK31. The DVB-S2 was the
best with the coding gain of around 4 dB but the code was slightly too long
taking 10 seconds per code to be transmitted. G.9960 took about �ve seconds
to transmit a codeword and had a coding gain of around 3.75 dB.

Meaningless SNR

Signal-to-noise ratio (SNR) seems to be quoted here there and everywhere. It's
even quoted on my soundcard as 114 dB, whatever that means. I de�nitely
get confused when people quote SNR values as they always seem to di�er so
much. SNR is de�ned as �the ratio of signal power to the noise power� according
to Wikipedia. The power of the signal is 1

RT

∑T−1
n=0 sig [n]

2
and the power of

the noise is 1
RT

∑T−1
n=0 noise [n]

2
. It gives you an idea of how loud a signal is

compared to the noise. Dividing one formula by the other will not however likely
give you an SNR value that matches anyone else's. The main problem is with
the noise and the fact that sampling limits the maximum frequency that can be
represented, if you sample faster your noise will consist of more frequencies and
as AWGN contains every frequency your calculation of the power of the noise
will increase thus decreasing SNR. It makes no di�erence if you try to measure
the power using some sort of analog device, as an analog device will have some

13

bandwidth restriction which will also limit noise. The upshot is the power of
the noise is technically in�nite meaning SNR is always negative in�nity in dBs.

To get around this problem people restrict the bandwidth before performing the
calculation; this makes the power �nite. However, generally no one mentions
the bandwidth when quoting SNR and you have to guess which really grinds
my gears. For oscilloscopes it may be 20 MHz, for a soundcard who knows, for
HAM stu� it may be be 2.5 kHz, and for someone else it could even use the
bandwidth of the signal to calculate the power of the noise over, who knows.

To make SNR more meaningful some notation like SNR2.5kHz,dB makes things
clear as to what you're doing. As HAMs on HF typically have receivers that
have a bandpass of around 2.5 kHz when they make measurements of the noise
this is the bandwidth they will be seeing hence my guess is that most SNR
values seen on the Internet will be SNR2.5kHz when expressed by HAMs.

Personally I like C/N0 which normalizes the noise bandwidth to 1 Hz the same
N0 noise density as we have seen before and C as the total signal power. This
is normally written as CNo and I have commonly seen it used for satellite stu�
(satellite TV and GPS). It has a nice interpretation that N0 = kBT where
kB is the Boltzmann constant and T is temperature in Kelvin. CNo units are
usually dB-Hz. CNo is a carrier to noise ratio (CNR). There seems to be a
di�erence between carrier-to-noise ratio (CNR) and SNR depending where the
measurement is performed but for me I'll use them interchangeably and can't
promise that I'll stick to one or the other. CNR apparently should be measured
after transmission and before reception, while SNR should be measured before
modulation or after demodulation in the baseband.

PSD and Power

Power spectral density (PSD) is what people think as frequency displays; fre-
quency along the bottom and PSD along the side.

Figure 9: PSD display of PKS31 left and Olivia right

The power of the signal is not the height of the PSD but rather the height times
the bandwidth. The power of the two signals in the previous �gure are the same
despite the fact that the Olivia signal appears around 15 or 20 dB smaller on the
PSD for any given frequency. You can't just look at the height of the signal on
a PSD and say a signal has that amount of power. Having some sort of needle
that measures the total signal power coming in makes more sense than looking
at a PSD display.

14

Figure 10: PSK31 and Olivia signals with the same power

Meaningful SNR values

ki4SGU at http://ki4sgu.blogspot.co.nz/2009/11/signal-to-noise-ratio-raindows-
in-dark.html seems like he had some way of measuring the µV s on his radio
(probably some needle showing strength in µV s). I think he used this to deter-

mine SNR of various signals by 10 log10

(
V 2
s

V 2
n

)
where Vs was the voltage reading

when the signal was present and Vn when the signal was not present. As his
receiver I think would most likely have a bandwidth around 2.5 kHz the results
he gives would be for SNR2.5kHz,dB . I too will follow this amount of bandwidth
to calculate my noise over so I can compare my results with his. Below I quote
what his �ndings were in what I believe is SNR2.5kHz,dB .

"CW@20WPM +3db (machine decoded by MFJ -461)

CW@20WPM +1db (machine decoded by fldigi or CWget)

HFpacket (300 baud) +1db

RTTY45 -5db

CW@20WPM -7db (other claim like less , like -13db*)

PSK63 -7db

FELDHell -7db

PSK31 -10db

Olivia 64/2000 -13db

Olivia 16/500 -14db

WSPR -30db (maybe less)"

While a mode such as WSPR may be useful even when the CNo is much lower
than PKS31, this does not in itself mean that WSPR is more energy e�cient
than PKS31 (i.e a lower EbNo for a given BER) it may be that WSPR spends
way longer sending a bit than that of PSK31, so much so that even the small

15

http://ki4sgu.blogspot.co.nz/2009/11/signal-to-noise-ratio-raindows-in-dark.html
http://ki4sgu.blogspot.co.nz/2009/11/signal-to-noise-ratio-raindows-in-dark.html

power that WSPR uses multiplied by time uses more energy per bit than PSK31
would use; however, it may not either.

SNR (CNR) EbNo relationship

In linear units and not in dB, the relationship between C and Eb is energy
divided by time equals power which implies C = Ebfb where fb is the net bit
rate. N and N0 is simply N = N0Bw. Therefore ...

SNRBw =
Ebfb
N0Bw

If everything (bar fb and Bw) is in dB the formula becomes ...

SNRBw,dB = EbNodB + 10 log10

(
fb
Bw

)
So from Wikipedia, WSPR sends 50 bits of information taking 110.6 seconds
meaning fb = 50/110.6 with a minimum SNR2.5kHz,dB = −30dB obtained
from ki4SGU we see that the energy e�ciency of WSPR is EbNodB (WSPR) ≈
−30 − (−37.4) = 7.4dB. Likewise we can do the same for PSK31 and obtain
EbNodB (PSK31) ≈ −10 − (−19) = 9dB. therefore, WSPR is actually more
energy-e�cient than PSK31, but I had no idea which was more energy-e�cient
until I did that calculation. As we have already seen, an EbNo of 9 dB has a
BER of around 10−5 which is what I consider a low enough BER to be an good
communication link.

For our LDPC-DQPSK modulation scheme at 31.25 symbols a second using the
G.9960 LDPC code, from �gure 8 we see that an EbNo of 6dB is around the
minimum value for an acceptable communication link. Therefore...

SNR2.5kHz,dB (LDPC −DQPSK,G.9960) = 6 + (−19) = −13dB

... which places our modulation scheme at Olivia 64/2000 according to ki4SGU.
Our modulation scheme means the signal can still be successfully usable if the
power of the transmitter is half compared to PSK31 while still maintaining the
speed of PSK31.

There's more to life than AWGN

So far we have only considered AWGN. AWGN is a channel impairment that
is not particularly challenging. There are nastier channel impairments that
happen in the real world. Of the nastier ones, ones with changing multipath
environments and/or rapid Doppler changes are pretty nasty. As we seem to be
dealing with a digital transmission scheme designed for HF it makes sense to
simulate such HF channel impairments.

16

In Matlab you can model such HF channels with what it implements using
the recommendations of ITU-R F.1487 for channel impairment modeling. Us-
ing it is as simple as the following for Medium latitudes, Moderate conditions
(iturHFMM).

chan = stdchan (1/Fs , 1 , ' iturHFMM ') ;
chan . NormalizePathGains = 1 ;
chan . Re s e tBe f o r eF i l t e r i n g=f a l s e ;
s ig_out = f i l t e r (chan , s ig_in) ;

With Matlab high latitude conditions experience the worst conditions. For me
living in the mid-latitudes when running voice through the �lter the results
sound uncannily like listening to a high power shortwave radio station.

So I'll now stop adding AWGN and add just HF channel impairment without
any noise added and see how the various modulation schemes perform.

HF channel impairments without AWGN

First putting PSK31 through HF, Medium latitudes, Moderate conditions (iturHFMM),
and no AWGN, I obtain the following with my program which was almost iden-
tical mistake for mistake by Fldigi, and is shown in the following picture.

Figure 11: PSK31 iturHFMM no AWGN

Using high latitudes moderate conditions (iturHFHM) instead both my program
and Fldigi did not successfully decode anything of the original PSK31 message.

Figure 12: PSK31 iturHFHM no AWGN

Similarly DQPSK at 31.25 symbols a second for iturHFMM was very successful
and similar to that of DBPSK at 31.25 symbols a second, but when using
iturHFHM it failed with DQPSK at 31.25 symbols a second. Trying all the HF
channels that Matlab simulates I wrote down the following qualitative results
that I got from them. From best to worst they are, excellent, good, marginal,
terrible, total failure. They are only my personal opinion when trying to read
the text that had been sent. It seems PSK31 is best for the mid-latitudes but
does not do so well for either the low latitudes or high latitudes.

17

Low latitudes Medium latitudes High latitudes
Quiet

conditions
good excellent good

Moderate
conditions

marginal good total failure

Disturbed
conditions

total failure marginal total failure

Disturbed
conditions near

vertical
incidence

NA terrible NA

Table 1: Qualitative PSK31 simulation results with no AWGN

Repeating the procedure again but using our new modulation scheme LCPC-
DQPSK,G.9960 I obtained the following results where �excellent� means I did
not see one error.

Low latitudes Medium latitudes High latitudes
Quiet

conditions
excellent excellent excellent

Moderate
conditions

excellent excellent total failure

Disturbed
conditions

total failure excellent total failure

Disturbed
conditions near

vertical
incidence

NA excellent NA

Table 2: Qualitative LCPC-DQPSK,G.9960 simulation results with no AWGN

You can see the ones that totally failed with PSK31 still fail with LCPC-
DQPSK,G.9960. I read somewhere that these three total failures all have
Doppler spreads of around 10 Hz which is an order of magnitude greater than
any of the others. Anyway, interesting results.

HF, Medium latitudes, Disturbed conditions and
AWGN

Adding AWGN back into the mix I compared DBPSK (PSK31) with LDPC(168x336)-
DQPSK with varying amounts of noise to obtain the following bit error rate
versus EbNo.

18

Figure 13: Fully automated passband reception of DQPSK at 31.25 symbols a
second using G.9960 LDPC code in HF conditions of medium latitude, disturbed
conditions with AWGN, in addition to comparison with DBPSK (PSK31) under
the same conditions.

The results are quite shocking. For LDPC(168x336)-DQPSK there is a slow
decrease of BER between 6 dB and 13 dB rather than the sharp cli� looking
response as can be seen in �gure 8. After around 13 dB there is a better decrease
in BER and above 15 dB I did not detect any errors with LDPC(168x336)-
DQPSK. So in the presence of Medium latitudes Disturbed conditions there is
approximately a 9 dB cost involved. This means you would need a transmitter
eight times more powerful due to the presence of Medium latitudes Disturbed
conditions compared to if there was just AWGN to deal with. Still, it's a lot
better than DBPSK (PSK31) where errors were detected no matter how much
power your transmitter has.

Finally putting a single tone through the channel rather than modulating it I
looked at what the channel does to what amounts to being a continuous stream
of repeating constellation points, this you can see in the following �gure.

19

(a) mid latitudes moderate conditions (b) high latitudes moderate conditions

Figure 14: A pilot tone and the trajectories it takes over about a second

I tried high and mid latitudes under moderate conditions. for the mid-latitudes
the pilot did not move particularly fast, and it was easy to tell visually where
the o�set was. For the high latitudes the thing just went nuts and would move
extremely fast; it moved too fast to visually predict where it would be fraction
of a second later. So we could send data quicker and use more bandwidth so
that we see the pilot move less due to the Doppler between one symbol on the
next; let's try that.

62.5 symbols a second

Using LDPC(336x672)-DQPSK and 62.5 symbols a second means the points on
the IQ display can only move half the speed that they used to due to Doppler.
Trying this I got the marginal quality link (about 2% error) on moderate con-
ditions high latitude which can be seen from table 2 I couldn't at 31.25 symbols
a second. This trick also worked at 125 symbols a second but not at 250.

Also with LDPC(336x672)-DBPSK at 62.5 symbols a second I was able to get a
marginal link quality on disturbed conditions at low latitudes. That leaves just
disturbed conditions at high latitudes.

Matlab Code

I put together a modem written in Matlab to demonstrate my LDPC-DQPSK31
protocol which you can obtain here http://jontio.zapto.org/download/ldpc-
dqpsk31-modem.zip

It modulates and demodulates in the passband that can be sent out to the
soundcard and obtained from the soundcard. I wrote it in MATLAB R2014a
and it requires the comms and dsp toolboxes. Just type LDPC_DQPSK31 into

20

http://jontio.zapto.org/download/ldpc-dqpsk31-modem.zip
http://jontio.zapto.org/download/ldpc-dqpsk31-modem.zip

the command window and the program will run with a constellation display
and you will hear the sound as well as it will decode the sound. I am aware
that the frequency tracking of it is probably not particularly great and should
be changed but as I wasn't testing how well it could cope with frequency drift
I wasn't too concerned with this.

For those who don't have Matlab here is some sound the program produced
http://jontio.zapto.org/download/ldpc-dqpsk31.wma and below is what the pro-
gram outputted on the command window.

Figure 15: Output from sound

Figure 16: Waterfall of audio �le

Others might �nd the �les varicode_init.m varicode.txt vari_encode.m vari_decode.m
useful for making a PSK31 modem. These �les will encode and decode PSK31
varicode.

Jonti 2015
http://jontio.zapto.org

21

http://jontio.zapto.org/download/ldpc-dqpsk31.wma
http://jontio.zapto.org

